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The stability of the flow of two layers of viscous liquids down an incline is in- 
vestigated. The problem is governed by two competing long-wavelength modes 
associated with the surfaces. One mode, calling it the first mode, is faster than the 
second one. When the two layers have the same coefficient of dynamic viscosity, 
the second mode was found earlier by the author to be the governing mode for 
most cases. The situation is greatly altered when viscosity is not the same for the 
two layers. The second mode is dramatically stabilized for the range of viscosity 
ratio, m, less than unity, and the first mode is now generally the governing mode 
in that range. The overall effect is stabilizing compared with m = 1. 

Arelative stability index is also introduced to compare the result with that of 
the homogeneous case. It is found that the presence of the upper layer is generally 
destabilizing compared with that of a homogeneous fluid of the same total depth. 

1. Introduction 
The stability of two-layered viscous flow down an incline was investigated by 

the author (1965a, b, hereinafter referred to as I and 11). Attention was focused 
on the effect of density variation by assuming the same viscosity for the two 
layers. It was found that there existed two modes of long-wave instabilities 
with the second mode generally governing, often causing instability to  set in at 
any Reynolds number however small. While there are some important situations, 
such as fresh water and salt water, in which the coefficient of dynamic viscosity 
is essentially the same for the two layers, this is usually not the case for two 
physically distinct liquids. The effect of this variation of viscosity on the two 
modes of instability is therefore of definite interest in physically realistic cases. 
It is therefore thought worthwhile to investigate the problem taking into account 
the effect of viscosity difference, especially in view of the fact that Yih (1967) has 
shown the destabilizing effect of viscosity stratification in plane Poiseuille and 
Couette flows. It will be seen in this paper that in the present case viscosity 
stratification is actually strongly stabilizing on the second mode although it 
could be mildly destabilizing on the first mode. Indeed, the overall effect will be 
seen to  be stabilizing, and, depending on the values of the ratios of density, 
viscosity, and depth, the two modes compete to govern the stability of the 
system. 
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The linearized stability problem is set up in the usual manner. The resulting 
two Orr-Sommerfeld equations for the two layers, plus interfacial, boundary, 
and free surface conditions, form an eigenvalue problem. The ratios of density, 
depth, and viscosity of the two layers appear as extra parameters of the problem. 
A method of long-wave approximation introduced by Yih (1963) is used to solve 
the problem. 

2. Formulation of the stability problem 
A brief derivation of the basic flow and perturbation equations will now be 

given together with a more detailed consideration of the boundary conditions 
and the eigenvalue problem. 

T h e  basic $ow 

On assuming parallel flow and using the X-Y co-ordinate axes as shown in 
figure 1, the solutions to the Navier-Stokes equations of the two-layered flow 
are, in non-dimensional form, 

u, = a1y2+b,y+k, (-8 < y < O ) ,  (1) 

U, = “2y2+b2y+Ic2 (0 < y 6 1), (2) 

V K  
in which a, = 

a, = -&K,  b, = -r8K and Ic, = Ic, = (+K+r8K). 

FIGURE 1. Definition sketch. 

The symbols above are defined as follows: S = d,/d, is the ratio of depths, 
r = p1/p2 is the ratio of densities, m = ,u1/,u2 is the ratio of viscosities, and 

K = ( l+8)[r(&8+82+83/3m)+ (++88)]-l. 

The reference length is d, and the reference velocity is the average velocity ga 
given by 

The subscript 1 denotes the upper fluid while 2 denotes the lower fluid. The 
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Reynolds numbers and Froude number are now defined to be 
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It then follows that R, = (r/m)R, and KF2 = R,sin$. In  deriving the mean 
flow velocities Ul and U, we have made use of the no-slip condition at the solid 
boundary and the interface together with the conditions of zero shear at the 
free surface and equal shear at  the interface. We also note that, in the y-direction, 
the mean flow pressure is hydrostatic, 

dP, cose dPl cose 
dy - P2 dy F2 ' 

- and 

where Pl and P2 are the mean flow pressures in the upper and lower layers nor- 
malized by p1 andp, gi respectively. Thus, at the interface y = 0, the equality 
of pressure yields rPl = P,. 

Per€urbation equations 

Following the usual procedure, the equations governing the disturbance motion 
in the two layers are derived from the Navier-Stokes equations on introducing 
infinitesimal two-dimensional disturbances to the basic flow. On decomposing 
the non-dimensional disturbance streamfunctions $1 and $2 and the distur- 
bance pressures into normal modes, there results, upon elimination of the 
pressures, the Orr-Sommerfeld equations: 

@ - 2a2$: + 

$9 - 2a2$; + 

= iaRl{( Ul - C )  (4; - C Z ~ $ ~ )  - Uq $1}, 

= iaR2{( U, - C )  ($; - a2$,) - U i  $J~}, 

(4) 

in -6 6 y < 0, where the superscripts denote differentiation with respect to y ,  
and 

in 0 

(5) 

y 6 1. In the above, $1 and +2 are defined through the relations: 

$1 = exp t ia (x  - ct)I and $2 = $2(y) exp [ ia(x  - ct)l, (6) 

in which a is the dimensionless wave-number defined by 27rd,/h, h being the 
wavelength, and c = c, + ic, is the dimensionless wave velocity normalized by 

Boundary conditions 

We first give the kinematic conditions at  the interface and free surface. Let the 
equation of the free surface be given by y = -6+t (x , t ) ,  and the interface by 
y = ~ ( x ,  t) .  The linearized kinematic conditions are then 

u,. 

-ali.,= -__ W l  

ax ax at the free surface and 2 + U - = ax 
36-2 
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at the interface. It then follows that 

5 = [A( - 6 ) / C l l  exp [ia(x- ct)l,  (7)  

and 7 = [952(0)/c21 exp [ia(x - ct)l, (8 )  

where c ,  = c-U,( -8)  and c2 = c-U2(0). 

We now formulate the boundary conditions. We denote the total non-dimen- 
sional velocity and pressure by (u, v) andp with as the reference velocity and 
p u t  as the normalizing quantity for pressure. The subscripts 1 and 2 will be used 
to designate the upper and lower layers respectively. 

At the free surface the shear stress must vanish, and the normal stress must 
balance the normal stress induced by surface tension. Thus we have 

and 

where S, = Tl/(p, 0: d2), Tl being the surface tension. At the interface, the total 
velocity components must be continuous; i.e. u1 = u2 and v1 = v2. Also, the shear 
must be continuous, 

The difference of the normal stresses must be balanced by the normal stress 
induced by the interfacial surface tension : 

where S, = T2/(p2 D i d 2 ) ,  T2 being the interfacial surface tension. Lastly, at  the 
solid boundary y = 1, we have up = 0 and v2 = 0. 

To the first order in the disturbance quantities, the above eight boundary 
conditions may be written as 
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To obtain the above set of equations the mean flow quantities should be evaluated 
at y = - 6 + [ for the free surface conditions and at  y = 7 for the interface condi- 
tions. However, since [ and q are perturbation quantities which are small, we 
need only take the leading terms, consistent with previous linearization, of 
the Taylor series expansions of quantities of interest and evaluate them a t  
y =  -Sandy=O. 

Eigenvalue problem 

Equations (4) and ( 5 )  together with boundary conditions (i) to (viii) form the 
eigenvalue problem we wish to  solve with G as the eigenvalue. The general solu- 
tions of (4) and (5 )  will contain eight arbitrary constants. Substitution of these 
solutions into the eight homogeneous boundary conditions will yield eight 
homogeneous algebraic equations for the eight constants. The vanishing of the 
determinant of the coefficients will give the secular equation in the form 
c = c(a,  R,, r ,  m, 6,8). Since c is complex, this relationship can be resolved into 
cr = cr(a, R,, r,  m, 6, 8 )  and ci = c,(a, R,, r ,  m, 6,8).  Putting ci = 0, the equation 
ci(a, R,, r ,  m, 6,8) = 0 represents the relationship between a and R, for given 
values of r ,  m, 6 and 8. 

3. Solution for long waves 
It will be seen that all of the relevant information on the problem can be 

obtained from examining long-wavelength disturbances. We therefore adopt the 
method used by Yih (1963) and introduce perturbation series of $1, $, and c in 
the form 

( 9 )  

(10) 

& = o  ( O < y < l ) ,  (11) 

i $1 = $ l o + ~ $ 1 1 + ~ 2 $ 1 2 + ~ ~ ~ ~  

$2 = $ 2 0 + a $ 2 1 f a 2 $ 2 2 f ’ * * ,  

c = c0+aAc+ .... 
Substitution of ( 9 )  into (4) and (5) and (i) to (viii), and collecting terms to the 

zeroth order in a, yield 
& = o  ( - S < y < O ) ,  

# ~ o t O ) - m ~ o ( O )  = 0, #20(1) = 0, # L O P )  = 0, 

where cl0 = co- Ul( -6) and c , ~  = co- U,(O). The solution is straightforward. 
After some calculation, we find 

G , ~  = -~(a,+a162+2alm6+Z) 

[(a,+a,P+ 2almS+ Z),+ 4[(ma, - a,) ( I  + alS2) + almS(b, - bl)]]+, (12)  

where 1 = U,(O) - V1( - 6). The plus and minus signs in front of the radical corres- 
pond to two different modes. We shall call the mode associated with the plus 
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sign the first mode and the minus sign the second mode. The eigenfunctions are 

$lO(Y) = 1 +BlY +DlY2, 

$20(Y) = 1 - 2Y + Y2, 

(13) 

(14) 

where B, = (b2-bl-2c20)/c20 and Dl= - 
c20 

As pointed out in I, the oscillations of the two surfaces are in phase for the &st 
mode while they are mainly 180" out of phase for the second mode. The wave 
velocity co for the two modes is shown in figures 2 and 3 as a function of m for 
various values of S and r = 0.9. It may be noted that the second mode is slower 
than the first one. To the first order in a, we have 

and the boundary conditions are 

c20[$:1(0) - ~$?1(0)1 = - iR2[c;o(&O(o) - r&o(O)) + (b2 - rbl)C20$20(0)1 

- i[K(  1 - r )  cot 8 + a2S2R2] $zo(o), 
$ 2 l ( l )  = 0, 

$la) = 0. 

AC = i{(G/H) R2 - [ ( @ / H )  cot 8 + (OR, S,/H) as]}, 

After some rather lengthy calculations, we obtain 

(17) 
where 

m c10 c;o 

G =  -- K;(-S)+'K1(-8)+- 2u (2u1S3+66) ~ KT(-6) 
m " c10 6 c10 

a 8  

c10 
[Cl0(B, - 20,6) + K;"( - S)] - 2 {+[CZ0( - 2 - rB,) 
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FIUURE 3. Wave velocity co for second mode, with the ratio of density r = 12,. 
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0 = A ( = + @ )  ( 1 - B 1 6 + D l f ) g  I lu16[K(l-r) 
6 c10 c10 m 3 c10 c20 

K ~ ( Y )  = (blD1 -a1BJy6/60+ [(k1-c0)D1-a1ly4/12, 

4 = Sl/S2. 

K,(y) = (b2+2a2)y5/60+ (k2-co-a2)y4/12, 

The calculations involved leading to these results have been independently 
checked by Mr C .  Park. A crucial test of the correctness comes on putting m = 1, 
which reduces to the case studied in I and 11. The results check exactly. This 
incidentally also provides an additional check on the correctness of the calculations 
in I and 11. The accuracy of the results is therefore firmly established. Since 
H ,  G, @ and O are all real for given values of r ,  m and 8, i t  then follows that Ac 
is purely imaginary, i.e. Ac = ici. The stability or instability is determined by 
whet her 

(g)R2-(:)cot6' 20. 

It may be noted that, whenever a critical Reynolds number exists, the long waves 
considered here do govern the stability; a result that could be established as in 
Yih (1963), Lin (1967), and in I ,  but has not been explicitly proven here. 

The main interest in this paper is to consider the physically realistic situation 
in which the coefficient of dynamic viscosity of the upper fluid is different from 
that of the lower fluid in addition to the differences in density and depth. The 
results are indeed quite striking. Figures 4 and 5 show the 'critical' Reynolds 
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FIGURE 4. 'Critical' Reynolds number R,,/cot 0 for first mode, with the 
ratio of density r = &. 
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number R,Jcot 0 for the first and second modes respectively, as a function of m 
for various values of 6 and r = 6. It is readily seen that the second mode is 
unstable and governs the problem at m = 1 but for m smaller than 1 this mode is 
highly stabilized and the first mode is now the governing mode. The effect of 
viscosity variation on the first mode is seen to be destabilizing for m < 1. For 
m > 1, this effect on both modes is mildly stabilizing. The second mode remains 
the governing one since it is still unstable at  low Reynolds numbers. The overall 
effect compared with m = 1 is thus stabilizing. Figures 6 and 7 are for r = A. 

100.0 

100 

Q 
c, 

8 
2- 

2 
1 .o 

0.1 I I I I - .  

0.01 0.10 1 .o 10.0 100.0 1000~0 

m 

FIGURE 5. ‘Critical’ Reynolds number R&ot 0 for second mode, with the ratio of density 
r = is;. The region between the two branches of the stability curve for each fixed 6 is 
the region of instability. * 1000 
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FIGURE 6. ‘Critical’ Reynolds number R,,/cot 6 for first mode, with the 
ratio of density Y = &. 
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For S > 1.6 the results are similar to the above case, which is typical for all r 
greater than about +F However for 6 < 1.6 the result is not as dramatic, since 
the first mode always governs even for m = 1. Nevertheless, the trends are still 
similar. 
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FIQURE 7. ‘Critical’ Reynolds number R,,/cot B for second mode with thO ratio of density 
r = &. The region between the two branches of the stability curve for each fixed 6 is 
the region of instability. 

FIGURE 8. Surface tension factor for first mode with T = &, q = 1. 

For the sake of completeness the surface tension factor is shown in figures 8 
and 9. The effect is stabilizing on the first mode but can be destabilizing on the 
second mode for 6 > 1 and m > 1. The surface tension effect is however usually 
unimportant for the long waves we are considering. 
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FIGURE 9. Surface tension factor for second mode with r = $6, 4 = 1. 

4. The relative stability index 
For m < 1, it is interesting and relevant to compare the stability of the two- 

layered flow relative to that of a homogeneous fluid of the same depth. TO this 
end we define, as in I, a relative stability index, S, as follows : 

critical depth for two-layer flow for a given 8 
critical depth for homogeneous flow for same 6' S =  

If S < 1, the two-layer flow is more unstable than the homogeneous flow. 
Indeed, if a flow of a homogeneous fluid of depth h is critical, then, when S < 1, 
the replacement of the homogeneous fluid by one with two layers of the same 
total depth will render the flow unstable. If S > 1, the situation is reversed. It 
may be remarked that the result for the homogeneous case was given by Benja- 
min (1957) and Yih (1963) and can be obtained from the present treatment as a 
special case by setting Q = 0 and 8, = 0. 

From the definition of the Reynolds number R,, the critical depth for two- 
layered flow is given by 

{KR,,~;( 1 -t- ~ ) 3 / p ;  g sin 6}+ 

and the critical depth for a homogeneous flow is 

{3R,&/&g sin S};. 

Therefore S = (1 + 6) {KR,,/SR,)~. 

Now R, = 8 cot 8; therefore 

S = 0*737( 1 + 6) (KR,,/cot 8)i. (19) 
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We have already seen that the first mode is the dominant mode for rn < 1. The 
stability index S for the first mode for m d 1 and r = 0.9 is shown in figure 10. 
It is seen that S < 1, and this is true if r is not too small. (For r = 0.1, it is possible 
for S > 1. )  Since, for m > 1, the system is always unstable, it  is thus concluded 
that the presence of the upper layer is generally destabilizing compared with 
that of a homogeneous fluid of the same total depth. 
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FIGURE 10. Relative stability index for first mode for rn =S 1, with r = 0.9. 

Finally it may be remarked that an interesting case arises when the upper 
layer is very thin so that it becomes essentially an adsorbed film and only one 
degree of freedom is allowed at  the surface by definition, Then there can be only 
one mode that governs the stability of the problem. The situation is analogous 
to a system of two vibrating masses with one mass shrinking to zero. The second 
mode is thus ruled out. It is then seen that S + 1 as I?+ 0, SO that the present case 
shows no marked effect on the stability of the layer, in contrast to an adsorbed 
film of surfactant material exhibiting surface elasticity. 
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